Recycling and WMA Fatigue Cracking Update Accelerated Load Facility

Fall 2015 Expert Task Group Oklahoma City

ALF Experimental Design

ALF	% R	BR	Virgin	WMA		
Lane	RAP	RAS	Binder PG	Process		
1	0	0 - 64-22		-		
2	40	-	58-28	Water		
3	-	20	64-22	-		
4	20	-	64-22	Chemical		
5	40	-	64-22	-		
6	20	-	64-22	-		
7	-	20	58-28	-		
8	40	-	58-28	-		
9	20	-	64-22	Water		
11	40	-	58-28	Chemical		

U.S. Department of Transportation

85% Complete

Lane 9	WMA-Foam 20% ABR
Lane 11	WMA-Chem 40% ABR 58-28
Lane 5	HMA 40% ABR
Lane 1	HMA 0% Control
Lane 3	HMA 20% ABR RAS
Lane 4	WMA-Chem 20% ABR
Lane 7	HMA 20% ABR RAS 58-28
Lane 2	WMA-Foam 40% ABR 58-28
Lane 8	HMA 40% ABR 58-28
Lane 6	HMA 20% ABR

Complete Complete Complete Complete Complete Complete Complete Loading Now... Loading Now... Next

Cracking Performance Measured...

Crack lengths are individually traced with "map-measure"

U.S. Department of Transportation Federal Highway Administration

Cracking Performance Measured...

Laboratory Performance Tests

- Cyclic Fatigue withOUT Structural Analysis
- Cyclic Fatigue WITH Structural Analysis

Stam De Ch Mi C)	ndard Method of Test for Itermining the Damage naracteristic Curve of Asphalt ixtures from Direct Tension yclic Fatigue Tests	_
VA	ASHTO Designation: TP 107-141	
	Imerican Association of State Highway and Transportation Officials Verbinden Decision State Nu, Suite 249	

"Classic" fatigue life curves representing uniaxial or flexural laboratory strains are used to interpret a single point in the pavement, but not the entire thickness

LVECD provides insight into damage throughout the depth and should provide a more complete picture of pavements structural response to:

- Supporting Layers
- Traffic
- Temperature

These affect more than just an infinitesimal point.

Fatigue Life Curves C_f failure criteria

Fatigue Life Curves G_R failure criteria

U.S. Department of Transportation Federal Highway Administration

Ranking – AMPT Fatigue withOUT Structural Analysis

]	Laborat	ory Fail	lure Crit	eria			
Ranking	ALF Pavement Cracking	Sample Breaks in AMPT* (Figure 4e&f)		Pset	udostiff phase a	ness at j ngle, C	peak	Dissipated <u>Pseudostrain</u> Energy, G ^R			
		Thered	Acad	Una	iged	Aged		Una	aged	Ag	ged
		Unaged	Aged	AB	PC	AB	PC	AB	PC	AB	PC
Dest	L1	L8	L9	L1	L7	L1	L1	L8	L8	L9	L9
Three	L9	L1	L1	L2	L3	L2	L3	L6	L9	L2	L2
Three	L4	L4	L8	L3	L2	L6	L9	L9	L6	L1	L4
		L2	L2	L7	L1	L3	<i>L8</i>	L11	L11	L4	L1
Middle	T 11**	L6	L4	L4	L4	L9	L2	L1	L1	L6	L6
Four		L9	L6	L8	L8	L8	L6	L2	L2	L8	L11
		L11	L11	L9	L9	L4	L4	L7	L7	L11	L3
Worst	L3	L3	L3	L6	L6	L5	L5	L4	L4	L3	L8
Three	L5	L5	L5	L5	L11	L11	L7	L5	L5	L7	L7
Inree	L7	L7	L7	L11	L5	L7	L11	L3	L3	L5	L5

*No S-VECD analysis, only the outcome of the physical tests

** 7 of 10 ALF lanes have performance available at the time of publication

AB = As Built & PC = Perfect Construction

AMPT Fatigue + Structural Analysis

Quantify the damage throughout the whole depth rather than relying on a single point at the bottom of the asphalt layer.

General Information General I	General Information × Design Structure × Structure General Information Structure Name Flexible 3-Layer Pavement Pavement/Lane Width (m) 3.65 Add Layer Remove Layer Move Layer AC (Click to Edit Layer) Base (Click to Edit Layer)	Layer Properties Layer Thickness (cm) Material Type Specific Gravity (optional) Strength/Modulus Poisson's R Einf (KPa Ref. Temp. Shift Facto Shift Facto	AC 10 Infinite Layer Asphalt Concrete 2.5 Expansion Co. (1/C) S Ratio 0.3000 a) 9.7300e+04 (C) 5 ral 6.9619e-04 ra2 -0.1620 ra3 0.7928	

Perfect Construction-Unaged.

Perfect Construction-Unaged.

Ŧ												
			LVEC	CD Struct	tural Pre	diction						
			% Node	es Below	Critical	Damage						
		Una	nged			Ag	ged		Measured ALF			
	As Built Per			rfect	Aa	Duilt	Per	rfect	1 errormanee			
	As Duin		Construction		AS Dulli		Const	ruction				
	L2	9%	L2	11%	L1	12%	L4	12%	L1	368,254		
	L1	10%	L4	12%	L4	14%	L1	14%	L9	270,058		
	L4	13%	L6	13%	L9	16%	L9	17%	L4	88,740		
	L6	13%	L1	14%	L2	18%	L2	19%				
	L9	15%	L9	16%	L6	19%	L6	19%	Lanes remain	2, 6, and 8 to be tested		
	L8	18%	L8	17%	L8	22%	L8	21%	1 cman	10 00 105104		
	L11	19%	L11	18%	L11	29%	L11	28%	L11	81,044		
	L3	31%	L3	31%	L5	42%	L5	47%	L3	42,399		
	L7	-	L5	35%	L7	66%	L7	62%	L5	36,946		
	L5	_	L7	46%	L3	-	L3	-	L7	23,005		

					Laborat	ory Fail	lure Crit	eria			
Ranking	ALF Pavement Cracking	Sample Breaks in AMPT* (Figure 4e&f)		Pse	udostiff phase a	ness at j ngle, C	peak	Dissipated <u>Pseudostrain</u> Energy, G ^R			
		TT	Aged	Una	oed	Aged		Una	nged	Ag	ged
		Unaged		AB	PC	AB	PC	AB	PC	AB	PC
Dest	L1	L8	L9	L1	L7	L1	L1	L8	L8	L9	L9
Throa	L9	L1	L1	L2	L3	L2	L3	L6	L9	L2	L2
Three	L4	L4	L8	L3	L2	L6	L9	L9	L6	L1	L4
		L2	L2	L7	L1	L3	L8	L11	L11	L4	L1
Middle	T 11**	L6	L4	L4	L4	L9	L2	L1	L1	L6	L6
Four		L9	L6	L8	L8	L8	L6	L2	L2	L8	L11
		L11	L11	L9	L9	L4	L4	L7	L7	L11	L3
Worst	L3	L3	L3	L6	L6	L5	L5	L4	L4	L3	L8
Throa	L5	L5	L5	L5	L11	L11	L7	L5	L5	L7	L7
Inree	L7	L7	L7	L11	L5	L7	L11	L3	L3	L5	L5

*No S-VECD analysis, only the outcome of the physical tests ** 7 of 10 ALF lanes have performance available at the time of publication AB = As Built & PC = Perfect Construction

÷											
			LVEC	CD Struct	tural Pre	diction					
			% NOU	es Below	Critical	Damage			Maaa	unad ATE	
		Una	nged			Ag	Measured ALF				
	As	Built	Per	rfect	As	Built	Per	rfect	1 errormanee		
	110	Dunt	Construction		7 to Dunt		Const	ruction			
	L2	9%	L2	11%	L1	12%	L4	12%	L1	368,254	
	L1	10%	L4	12%	L4	14%	L1	14%	L9	270,058	
	L4	13%	L6	13%	L9	16%	L9	17%	L4	88,740	
	L6	13%	L1	14%	L2	18%	L2	19%			
	L9	15%	L9	16%	L6	19%	L6	19%	Lanes remain	2, 6, and 8	
	L8	18%	L8	17%	L8	22%	L8	21%	1 cman	10 00 105104	
	L11	19%	L11	18%	L11	29%	L11	28%	L11	81,044	
	L3	31%	L3	31%	L5	42%	L5	47%	L3	42,399	
	L7	-	L5	35%	L7	66%	L7	62%	L5	36,946	
	L3	Area _	L7	46%	L3	-	L3	-	L7	23,005	

					Laborat	ory Fail	lure Cri	teria			
Ranking	ALF Pavement Cracking	Sample Breaks in AMPT* (Figure 4e&f)		Pse	udostiff phase a	ness at j ngle, C	peak	Dissipated <u>Pseudostrain</u> Energy, G ^R			
		TT 1	. 1	Una	nged	Aged		Una	aged	Ag	ged
		Unaged	Aged	AB	PC	AB	PC	AB	PC	AB	PC
Dest	L1	L8	L9	L1	L7	L1	L1	L8	L8	L9	L9
Thread	L9	L1	L1	L2	L3	L2	L3	L6	L9	L2	L2
Three	L4	L4	L8	L3	L2	L6	L9	L9	L6	L1	L4
		L2	L2	L7	L1	L3	L8	L11	L11	L4	L1
Middle	T 11**	L6	L4	L4	L4	L9	L2	L1	L1	L6	L6
Four		L9	L6	L8	L8	L8	L6	L2	L2	L8	L11
		L11	L11	L9	L9	L4	L4	L7	L7	L11	L3
Worst	L3	L3	L3	L6	L6	L5	L5	L4	L4	L3	L8
Thread	L5	L5	L5	L5	L11	L11	L7	L5	L5	L7	L7
Inree	L7	L7	L7	L11	L5	L7	L11	L3	L3	L5	L5

*No S-VECD analysis, only the outcome of the physical tests ** 7 of 10 ALF lanes have performance available at the time of publication AB = As Built & PC = Perfect Construction

Φ											
			LVEC	CD Struc	tural Pre	diction					
			% N00	es Below	Critical	Damage			Manage ALE		
		Una	nged			Ag	Measured ALF				
	As Built		Pe	rfect	As	Built	Per	rfect		omanee	
			Construction		7 to Duin		Const	ruction			
	L2	9%	L2	11%	L1	12%	L4	12%	L1	368,254	
	L1	10%	L4	12%	L4	14%	L1	14%	L9	270,058	
	L4	13%	L6	13%	L9	16%	L9	17%	L4	88,740	
	L6	13%	L1	14%	L2	18%	L2	19%			
	L9	15%	L9	16%	L6	19%	L6	19%	Lanes remain	2, 6, and 8	
	L8	18%	L8	17%	L8	22%	L8	21%	1 Cintain	10 00 105104	
	L11	19%	L11	18%	L11	29%	L11	28%	L11	81,044	
	L3	31%	L3	31%	L5	42%	L5	47%	L3	42,399	
	L7		L5	35%	L7	66%	L7	62%	L5	36,946	
	Chart Area		L7	46%	L3	-	L3	-	L7	23,005	

Summary

 More consistent agreement was found between the structural prediction of the damage distribution through the thickness of the simulated pavement and the measured **ALF** fatigue cracking

Summary

- Complete data set is almost complete but it might indicate 4
 Clusters in decreasing order of performance
 - -0% Recycle
 - -20% RAP-BR 64-22
 - -40% RAP-BR 58-28

-"Poor": RAS & 40% RAP-BR 64-22

Next Steps

- Will determine how much binder needs to be added for RAS & 40% RAP-BR mixes to exhibit equivalent performance.
- Will be conducting performance tests on 40% RAS & RAP-BR + 0.5%, 1.0% binder.
- Which mix is the reference mix that should be the equivalent performance target?
 – 0% or 20% RAP-BR?

Thank You

Questions?

Comments?

Concerns?

Dynamic Complex Modulus

ALF Experimental Design

Product	HMA / Way	•			•	
Recycle	X Technolog	300°F -	- 320°F	240°F - 270°F		
JCIE Cor	otent	-	-	Foam	Chem.	
	0%	PG64	1-22	-	-	
	20% ABR RAP ≈ 23% by weight	► PG64	4-22	♥ PG64-22	P G64-22	
	20% ABR RAS ≈ 6% Shingle by weight	♥ PG64-22	PG58-28			
	40% ABR RAP ≈ 44% by weight	PG64-22	PG58-28	PG58-28	PG58-28	

"Classic" Fatigue Life Curves Complete Failure in Test

